1
0
Fork 0
LangPlayground/Python/similar-images-classification/main.py

110 lines
3.4 KiB
Python
Raw Normal View History

import os
2024-09-02 21:38:51 +02:00
import sys
import numpy as np
from tensorflow.keras.applications import vgg19
from tensorflow.keras.preprocessing import image
from tensorflow.keras.applications.vgg19 import preprocess_input
import faiss
import cv2
2024-09-02 21:34:53 +02:00
def query_yes_no(question, default="yes"):
"""Ask a yes/no question via raw_input() and return their answer.
"question" is a string that is presented to the user.
"default" is the presumed answer if the user just hits <Enter>.
It must be "yes" (the default), "no" or None (meaning
an answer is required of the user).
The "answer" return value is True for "yes" or False for "no".
"""
valid = {"yes": True, "y": True, "ye": True,
"no": False, "n": False}
if default is None:
prompt = " [y/n] "
elif default == "yes":
prompt = " [Y/n] "
elif default == "no":
prompt = " [y/N] "
else:
raise ValueError("invalid default answer: '%s'" % default)
while True:
sys.stdout.write(question + prompt)
choice = input().lower()
if default is not None and choice == '':
return valid[default]
elif choice in valid:
return valid[choice]
else:
sys.stdout.write("Please respond with 'yes' or 'no' "
"(or 'y' or 'n').\n")
model = vgg19.VGG19(weights="imagenet", include_top=False, pooling="avg")
def extract_features(img_path, model):
img = image.load_img(img_path, target_size=(224, 224))
img = image.img_to_array(img)
img = np.expand_dims(img, axis=0)
img = preprocess_input(img)
feature = model.predict(img)
return feature.flatten()
image_dir = "images/"
image_paths = [
os.path.join(image_dir, f) for f in os.listdir(image_dir) if f.endswith(".jpg")
]
features = []
if os.path.exists("image_index.bin"):
if query_yes_no("Load the index?", default="yes"):
index = faiss.read_index("image_index.bin")
else:
for image_path in image_paths:
img_feature = extract_features(image_path, model)
features.append(img_feature)
features = np.array(features)
d = features.shape[1]
index = faiss.IndexFlatL2(d)
index.add(features)
if query_yes_no("Save the index?", default="yes"):
faiss.write_index(index, "image_index.bin")
else:
for image_path in image_paths:
img_feature = extract_features(image_path, model)
features.append(img_feature)
features = np.array(features)
d = features.shape[1]
index = faiss.IndexFlatL2(d)
index.add(features)
if query_yes_no("Save the index?", default="yes"):
faiss.write_index(index, "image_index.bin")
def find_similar_images(query_image_path, index, k=6):
query_feature = extract_features(query_image_path, model).reshape(1, -1)
2024-09-02 21:39:28 +02:00
distance, indices = index.search(query_feature, k)
return distance.flatten(), indices.flatten()
query_image_path = "query_image.jpg"
2024-09-02 21:39:28 +02:00
similar_image_distance, similar_image_indices = find_similar_images(query_image_path, index)
# display the results
2024-09-02 21:39:28 +02:00
for i, idx in enumerate(similar_image_indices):
similar_image_path = image_paths[idx]
img = cv2.imread(similar_image_path)
2024-09-02 21:39:28 +02:00
similarity = 1 - similar_image_distance[i] / np.max(similar_image_distance)
cv2.imshow(f"Similarity: {similarity * 100:.2f}% ({i+1}/{len(similar_image_indices)})", img)
cv2.waitKey(0)
cv2.destroyAllWindows()