Compare commits
2 commits
f5e79bae5b
...
43a979041e
Author | SHA1 | Date | |
---|---|---|---|
43a979041e | |||
977be10b92 |
1 changed files with 61 additions and 7 deletions
|
@ -6,6 +6,40 @@ from tensorflow.keras.applications.vgg19 import preprocess_input
|
|||
import faiss
|
||||
import cv2
|
||||
|
||||
|
||||
def query_yes_no(question, default="yes"):
|
||||
"""Ask a yes/no question via raw_input() and return their answer.
|
||||
|
||||
"question" is a string that is presented to the user.
|
||||
"default" is the presumed answer if the user just hits <Enter>.
|
||||
It must be "yes" (the default), "no" or None (meaning
|
||||
an answer is required of the user).
|
||||
|
||||
The "answer" return value is True for "yes" or False for "no".
|
||||
"""
|
||||
valid = {"yes": True, "y": True, "ye": True,
|
||||
"no": False, "n": False}
|
||||
if default is None:
|
||||
prompt = " [y/n] "
|
||||
elif default == "yes":
|
||||
prompt = " [Y/n] "
|
||||
elif default == "no":
|
||||
prompt = " [y/N] "
|
||||
else:
|
||||
raise ValueError("invalid default answer: '%s'" % default)
|
||||
|
||||
while True:
|
||||
sys.stdout.write(question + prompt)
|
||||
choice = input().lower()
|
||||
if default is not None and choice == '':
|
||||
return valid[default]
|
||||
elif choice in valid:
|
||||
return valid[choice]
|
||||
else:
|
||||
sys.stdout.write("Please respond with 'yes' or 'no' "
|
||||
"(or 'y' or 'n').\n")
|
||||
|
||||
|
||||
model = vgg19.VGG19(weights="imagenet", include_top=False, pooling="avg")
|
||||
|
||||
|
||||
|
@ -24,15 +58,35 @@ image_paths = [
|
|||
]
|
||||
features = []
|
||||
|
||||
for image_path in image_paths:
|
||||
img_feature = extract_features(image_path, model)
|
||||
features.append(img_feature)
|
||||
if os.path.exists("image_index.bin"):
|
||||
if query_yes_no("Load the index?", default="yes"):
|
||||
index = faiss.read_index("image_index.bin")
|
||||
else:
|
||||
for image_path in image_paths:
|
||||
img_feature = extract_features(image_path, model)
|
||||
features.append(img_feature)
|
||||
|
||||
features = np.array(features)
|
||||
features = np.array(features)
|
||||
|
||||
d = features.shape[1]
|
||||
index = faiss.IndexFlatL2(d)
|
||||
index.add(features)
|
||||
d = features.shape[1]
|
||||
index = faiss.IndexFlatL2(d)
|
||||
index.add(features)
|
||||
|
||||
if query_yes_no("Save the index?", default="yes"):
|
||||
faiss.write_index(index, "image_index.bin")
|
||||
else:
|
||||
for image_path in image_paths:
|
||||
img_feature = extract_features(image_path, model)
|
||||
features.append(img_feature)
|
||||
|
||||
features = np.array(features)
|
||||
|
||||
d = features.shape[1]
|
||||
index = faiss.IndexFlatL2(d)
|
||||
index.add(features)
|
||||
|
||||
if query_yes_no("Save the index?", default="yes"):
|
||||
faiss.write_index(index, "image_index.bin")
|
||||
|
||||
|
||||
def find_similar_images(query_image_path, index, k=6):
|
||||
|
|
Loading…
Reference in a new issue