Compare commits
2 commits
f5e79bae5b
...
43a979041e
Author | SHA1 | Date | |
---|---|---|---|
43a979041e | |||
977be10b92 |
1 changed files with 61 additions and 7 deletions
|
@ -6,6 +6,40 @@ from tensorflow.keras.applications.vgg19 import preprocess_input
|
||||||
import faiss
|
import faiss
|
||||||
import cv2
|
import cv2
|
||||||
|
|
||||||
|
|
||||||
|
def query_yes_no(question, default="yes"):
|
||||||
|
"""Ask a yes/no question via raw_input() and return their answer.
|
||||||
|
|
||||||
|
"question" is a string that is presented to the user.
|
||||||
|
"default" is the presumed answer if the user just hits <Enter>.
|
||||||
|
It must be "yes" (the default), "no" or None (meaning
|
||||||
|
an answer is required of the user).
|
||||||
|
|
||||||
|
The "answer" return value is True for "yes" or False for "no".
|
||||||
|
"""
|
||||||
|
valid = {"yes": True, "y": True, "ye": True,
|
||||||
|
"no": False, "n": False}
|
||||||
|
if default is None:
|
||||||
|
prompt = " [y/n] "
|
||||||
|
elif default == "yes":
|
||||||
|
prompt = " [Y/n] "
|
||||||
|
elif default == "no":
|
||||||
|
prompt = " [y/N] "
|
||||||
|
else:
|
||||||
|
raise ValueError("invalid default answer: '%s'" % default)
|
||||||
|
|
||||||
|
while True:
|
||||||
|
sys.stdout.write(question + prompt)
|
||||||
|
choice = input().lower()
|
||||||
|
if default is not None and choice == '':
|
||||||
|
return valid[default]
|
||||||
|
elif choice in valid:
|
||||||
|
return valid[choice]
|
||||||
|
else:
|
||||||
|
sys.stdout.write("Please respond with 'yes' or 'no' "
|
||||||
|
"(or 'y' or 'n').\n")
|
||||||
|
|
||||||
|
|
||||||
model = vgg19.VGG19(weights="imagenet", include_top=False, pooling="avg")
|
model = vgg19.VGG19(weights="imagenet", include_top=False, pooling="avg")
|
||||||
|
|
||||||
|
|
||||||
|
@ -24,15 +58,35 @@ image_paths = [
|
||||||
]
|
]
|
||||||
features = []
|
features = []
|
||||||
|
|
||||||
for image_path in image_paths:
|
if os.path.exists("image_index.bin"):
|
||||||
|
if query_yes_no("Load the index?", default="yes"):
|
||||||
|
index = faiss.read_index("image_index.bin")
|
||||||
|
else:
|
||||||
|
for image_path in image_paths:
|
||||||
img_feature = extract_features(image_path, model)
|
img_feature = extract_features(image_path, model)
|
||||||
features.append(img_feature)
|
features.append(img_feature)
|
||||||
|
|
||||||
features = np.array(features)
|
features = np.array(features)
|
||||||
|
|
||||||
d = features.shape[1]
|
d = features.shape[1]
|
||||||
index = faiss.IndexFlatL2(d)
|
index = faiss.IndexFlatL2(d)
|
||||||
index.add(features)
|
index.add(features)
|
||||||
|
|
||||||
|
if query_yes_no("Save the index?", default="yes"):
|
||||||
|
faiss.write_index(index, "image_index.bin")
|
||||||
|
else:
|
||||||
|
for image_path in image_paths:
|
||||||
|
img_feature = extract_features(image_path, model)
|
||||||
|
features.append(img_feature)
|
||||||
|
|
||||||
|
features = np.array(features)
|
||||||
|
|
||||||
|
d = features.shape[1]
|
||||||
|
index = faiss.IndexFlatL2(d)
|
||||||
|
index.add(features)
|
||||||
|
|
||||||
|
if query_yes_no("Save the index?", default="yes"):
|
||||||
|
faiss.write_index(index, "image_index.bin")
|
||||||
|
|
||||||
|
|
||||||
def find_similar_images(query_image_path, index, k=6):
|
def find_similar_images(query_image_path, index, k=6):
|
||||||
|
|
Loading…
Reference in a new issue